Environmental Protection Agency - (ii) Disconnect the transfer line at the probe and cap or plug the transfer line. - (iii) Close a leak-tight valve located in the sample transfer line within 92 cm of the probe. - (2) Operate all vacuum pumps. Draw a vacuum that is representative of normal operating conditions. In the case of sample bags, we recommend that you repeat your normal sample bag pump-down procedure twice to minimize any trapped volumes. - (3) Turn off the sample pumps and seal the system. Measure and record the absolute pressure of the trapped gas and optionally the system absolute temperature. Wait long enough for any transients to settle and long enough for a leak at 0.5% to have caused a pressure change of at least 10 times the resolution of the pressure transducer, then again record the pressure and optionally temperature. - (4) Calculate the leak flow rate based on an assumed value of zero for pumped-down bag volumes and based on known values for the sample system volume, the initial and final pressures, optional temperatures, and elapsed time. Using the calculations specified in 1065.644, verify that the vacuum-decay leak flow rate is less than 0.5% of the system's normal in-use flow rate. [73 FR 37307, June 30, 2008, as amended at 73 FR 59328, Oct. 8, 2008; 75 FR 23040, Apr. 30, 2010] CO AND CO2 MEASUREMENTS ## - (a) Scope and frequency. If you measure CO_2 using an NDIR analyzer, verify the amount of H_2O interference after initial analyzer installation and after major maintenance. - (b) Measurement principles. H_2O can interfere with an NDIR analyzer's response to CO_2 . If the NDIR analyzer uses compensation algorithms that utilize measurements of other gases to meet this interference verification, simultaneously conduct these other measurements to test the compensation algorithms during the analyzer interference verification. - (c) System requirements. A CO_2 NDIR analyzer must have an H_2O interference that is within (0.0 ± 0.4) mmol/mol, though we strongly recommend a lower interference that is within (0.0 ± 0.2) mmol/mol. - (d) *Procedure*. Perform the interference verification as follows: - (1) Start, operate, zero, and span the CO_2 NDIR analyzer as you would before an emission test. If the sample is passed through a dryer during emission testing, you may run this verification test with the dryer if it meets the requirements of §1065.342. Operate the dryer at the same conditions as you will for an emission test. You may also run this verification test without the sample dryer. - (2) Create a humidified test gas by bubbling zero gas that meets the specifications in $\S 1065.750$ through distilled H_2O in a sealed vessel. If the sample is not passed through a dryer during emission testing, control the vessel temperature to generate an H_2O level at least as high as the maximum expected during emission testing. If the sample is passed through a dryer during emission testing, control the vessel temperature to generate an H_2O level at least as high as the level determined in $\S 1065.145(e)(2)$ for that dryer. - (3) Introduce the humidified test gas into the sample system. You may introduce it downstream of any sample dryer, if one is used during testing. - (4) If the sample is not passed through а dryer during this verification test, measure the H₂O mole fraction, $x_{\rm H2O}$, of the humidified test gas, as close as possible to the inlet of the analyzer. For example, measure dewpoint, T_{dew} , and absolute pressure, p_{total} , to calculate x_{H2O} . Verify that the H₂O content meets the requirement in paragraph (d)(2) of this section. If the sample is passed through a dryer during this verification test, you must verify that the H₂O content of the humidified test gas downstream of the vessel meets the requirement in paragraph (d)(2) of this section based on either direct measurement of the H₂O content (e.g., dewpoint and pressure) or ## § 1065.355 an estimate based on the vessel pressure and temperature. Use good engineering judgment to estimate the $\rm H_2O$ content. For example, you may use previous direct measurements of $\rm H_2O$ content to verify the vessel's level of saturation. - (5) If a sample dryer is not used in this verification test, use good engineering judgment to prevent condensation in the transfer lines, fittings, or valves from the point where $x_{\rm H2O}$ is measured to the analyzer. We recommend that you design your system so the wall temperatures in the transfer lines, fittings, and valves from the point where $x_{\rm H2O}$ is measured to the analyzer are at least 5 °C above the local sample gas dewpoint. - (6) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the transfer line and to account for analyzer response. - (7) While the analyzer measures the sample's concentration, record 30 seconds of sampled data. Calculate the arithmetic mean of this data. The analyzer meets the interference verification if this value is within (0.0 ±0.4) mmol/mol. - (e) *Exceptions*. The following exceptions apply: - (1) You may omit this verification if you can show by engineering analysis that for your CO_2 sampling system and your emission-calculation procedures, the $\mathrm{H}_2\mathrm{O}$ interference for your CO_2 NDIR analyzer always affects your brake-specific emission results within $\pm 0.5\%$ of each of the applicable standards. This specification also applies for vehicle testing, except that it relates to emission results in g/mile or g/kilometer. - (2) You may use a CO₂ NDIR analyzer that you determine does not meet this verification, as long as you try to correct the problem and the measurement deficiency does not adversely affect your ability to show that engines comply with all applicable emission standards [70 FR 40516, July 13, 2005, as amended at 73 FR 37308, June 30, 2008; 73 FR 59328, Oct. 8, 2008; 75 FR 23040, Apr. 30, 2010; 76 FR 57447, Sept. 15, 2011; 79 FR 23768, Apr. 28, 2014] ## \$1065.355 H₂O and CO₂ interference verification for CO NDIR analyzers. - (a) Scope and frequency. If you measure CO using an NDIR analyzer, verify the amount of $\rm H_2O$ and $\rm CO_2$ interference after initial analyzer installation and after major maintenance. - (b) Measurement principles. H₂O and CO₂ can positively interfere with an NDIR analyzer by causing a response similar to CO. If the NDIR analyzer uses compensation algorithms that utilize measurements of other gases to meet this interference verification, simultaneously conduct these other measurements to test the compensation algorithms during the analyzer interference verification. - (c) System requirements. A CO NDIR analyzer must have combined H₂O and CO₂ interference that is within ±2 % of the flow-weighted mean concentration of CO expected at the standard, though we strongly recommend a lower interference that is within ±1%. - (d) *Procedure*. Perform the interference verification as follows: - (1) Start, operate, zero, and span the CO NDIR analyzer as you would before an emission test. If the sample is passed through a dryer during emission testing, you may run this verification test with the dryer if it meets the requirements of §1065.342. Operate the dryer at the same conditions as you will for an emission test. You may also run this verification test without the sample dryer. - (2) Create a humidified CO2 test gas by bubbling a CO₂ span gas that meets the specifications in §1065.750 through distilled H2O in a sealed vessel. If the sample is not passed through a dryer during emission testing, control the vessel temperature to generate an H₂O level at least as high as the maximum expected during emission testing. If the sample is passed through a dryer during emission testing, control the vessel temperature to generate an H₂O level at least as high as the level determined in $\S1065.145(e)(2)$ for that dryer. Use a CO₂ span gas concentration at least as high as the maximum expected during - (3) Introduce the humidified CO_2 test gas into the sample system. You may introduce it downstream of any sample dryer, if one is used during testing.